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Introduction

Algorithm
name

Stability func. Roughness	length for
Gustiness Parent	Model

unstable stable momentum	z0
temperature	zq
and	humidity		zq

LS87

Businger et	al.	
(1971)

Holtslag et	al.
(1990)

𝛼 "∗$

%
+ 0.11 *

"∗
, a=0.011

Assume	equal	to	z0.

No

Unstructured grid,	finite-
volume	community	ocean

model	(FVCOM)
(ocean model)

C89 𝛼 "∗$

%
,		a=0.0101 No Large	Lake	Thermodynamic

Model (hydrology	model)

Z98L 0.001	m Yes
Weather Research	and	
Forecasting-lake	(WRF,	
atmospheric	model)

J99 Businger et	al.	
(1971)

Beljaars and
Holtslag (1991)

𝑧exp 1−𝜅 4
2.7×1089

𝑈

+ 1.42×108< + 7.64×108>𝑈?
8@

A
No FVCOM-UGCICE	(ice-ocean	

model)

COARE
Businger et	al.	
(1971) &	Fairall
et	al.,(2003)

Beljaaes and	
Holtslag,	
(1991)

𝛼 "∗$

%
+ 0.11 *

"∗

a :	function	of	wind	speed
min(1.6×108<, 5.8
×108>𝑅𝑟8J.KL) Yes FVCOM	and many	other	

applications

Simulation:	The	heat	flux	algorithms	were	isolated	from	each	model	and	driven	by	
meteorological	data	from	four	over-lake	stations	within	the	Great	Lakes	Evaporation	
Network	(Fig.	1)
Evaluation:	The	simulation	results	were	then	compared	with	eddy	covariance	flux	
measurements	from	the	same	stations.	
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Conclusion
We	successfully	evaluated	the	flux	algorithms	by	comparing	the	simulation	results	
with	the	eddy	covariance	measurements,	as	well	as	identified	and	reduced	errors	in	
simulated	heat	fluxes	from	these	algorithms	by	updating	the	parameterization	of	
roughness	length	scales	for	temperature	and	momentum.	Accurate	simulation	of	
the	turbulent	heat	fluxes	from	the	lake	surface	is	important	to	a	wide	range	of	lake-
atmosphere	and	earth	system	applications.	The	continued	monitoring	of	turbulent	
heat	fluxes	at	the	offshore	stations	is	critical	for	such	models	to	be	improved	in	
future	studies.
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The	turbulent	fluxes	of	latent	and	sensible	heat	are	important	physical	processes	
that	influence	the	energy	and	water	budgets	of	the	North	American	Great	Lakes.	
Validation	and	improvement	of	bulk	flux	algorithms	to	simulate	these	turbulent	heat	
fluxes	are	critical	for	accurate	prediction	of	lake	hydrodynamics,	water	levels,	
weather,	and	climate	over	the	region.	Here	we	evaluate	five	heat	flux	algorithms	
from	several	model	systems	that	are	used	in	research	and	operational	environments	
and	concentrate	on	different	aspects	of	the	Great	Lakes’	physical	system.	

Figure 1. Map of the Great Lakes the the four eddy covariance
stations. Adapted from Lenters et al. (2013)

Method
Table 1. Bulk flux algorithm details

Results

Improvement: Evidence	suggests	z0 can	
be	significantly	larger	than	z0q,q,	because	
momentum	is	transported	across	the	air-
sea	interface	by	pressure	forces	acting	on	
roughness	elements,	while	heat	and	
water	vapor	must	ultimately	be	
transferred	by	molecular	diffusion	across	
the	interfacial	sublayer..	Only	the	COARE	
algorithm	takes	account	of	this	effect	in	
the	five	algorithms.	To	improve	the	z0q,q
representation,	we	apply	COARE’s	z0q,q
parameterization	to	the	other	algorithms.

ß Figure	2.	Meteorological	
data	at	the	four	eddy	
covariance	stations.

The	seasonal	variation: The	algorithms	successfully	reproduced	seasonal	cycle	of	latent	
and	sensible	heat	fluxes	(Fig.	3,	6,	and	7).	On	the	other	hand,	the	original	algorithms	
except	for	COARE	showed	significant	overestimation	of	fall-time	heat	fluxes	(Figs.	3,	4,and	
5).	Overall,	the	COARE	algorithm	presented	the	best	agreement	with	the	observations	
(Table	2).

Improvement	using	the	updated	z0q,q parameterization:With	the	new	z0q,q
parameterization,	the	overestimation	by	the	LS87,	C89,Z98L,	and	J99	algorithms	was	
significantly	improved	(Figs.	3,4,	and	5).	

Geographical	influence:	At	the	Long	Point	station,	which	is	located	on	the	shore,	the	
measured	lE and	H appeared	to	be	influenced	by	the	land	surface	and	the	agreement	
with	the	simulation	results	was	not	as	good	as	at	the	other	stations	(Figs.	6	and	7).

Figure 6. Time series of latent heat flux (lE) at Stannard Rock, Long Pont, Spectacle Reef, and White Shoal. Black
lines denote observations. Color lines are simulation results with the updated z 0q,qparameterization.

Figure 7. Time series of sensible heat flux (H) at Stannard Rock, Long Pont, Spectacle Reef, and White Shoal. Black
lines denote observations. Color lines are simulation results with the updated z 0q,qparameterization.

White Shoal

RMSE [W/m2] Error reduction 

ratio [%]

Mean observed 

flux [W/m2]
COARE J99 LS87 Z98L C89

Latent Heat lE 46.7 53.2 (46.8) 48.2 (47.2) 48.1 (81.6) 48.3 (47.6) 11.4 39.0

Sensible Heat H 27.3 27.9 (42.6) 27.7 (68.1) 27.2 (66.5) 25.3 (30.6) 48.0 70.0

Table 2. Root Mean Square Errors (RMSEs) of simulated latent and sensible heat fluxes or 2012-2014. Error reduction ratios
denote the mean RMSE decreases by the updated z0q,q parameterization that is normalized by mean observed fluxs.
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Figure 3. Time series of latent (lE) and sensible
(H) heat fluxes at Stannard Rock. Black lines
denote observations. Color lines are simulation
results. (a) and(c) are with the original z 0q,q
parameterization and (b) and (d) are with the
updated z 0q,qparameterization.

Figure 4 (left) and 5 (right). Scatter plots of observed (x-axis) and modeled (y-axis) turbulent heat fluxes. Latent heat flux in fig. 4 (left)
and sensible heat flux in fig. 5 (right).
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